Abstract

We deal with a one-dimensional coupled system of semi-linear reaction-diffusion equations in two a priori unknown moving phases driven by a non-local kinetic condition. The PDEs system models the penetration of gaseous carbon dioxide in unsaturated porous materials (like concrete). The main issue is that the strong competition between carbon dioxide diffusion and the fast reaction of carbon dioxide with calcium hydroxide–which are the main active reactants–leads to a sudden drop in the alkalinity of concrete near the steel reinforcement. This process–called concrete carbonation–facilitates chemical corrosion and drastically influences the lifetime of the material. We present details of a class of moving-boundary models with kinetic condition at the moving boundary and address the local existence, uniqueness and stability of positive weak solutions. We also point out our concept of global solvability. The application of such moving-boundary systems to the prediction of carbonation penetration into ordinary concrete samples is illustrated numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.