Abstract
We study the radial movement of an incompressible fluid located in a Hele–Shaw cell rotating at a constant angular velocity in the horizontal plane. Within an analytic framework, local existence and uniqueness of solutions is proved, and it is shown that the unique rotationally invariant equilibrium of the flow is unstable. There are, however, other time-independent solutions: using surface tension as a bifurcation parameter we establish the existence of global bifurcation branches consisting of stationary fingering patterns. The same results can be obtained by fixing the surface tension while varying the angular velocity. Finally, it is shown that the equilibria on a global bifurcation branch converge to a circle as the surface tension tends to infinity, provided they stay suitably bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.