Abstract

Abstract This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.