Abstract
In this paper, we are interested in the initial-(non-homogeneous) Dirichlet boundary value problem for a multi-dimensional scalar non-linear conservation law with a multiplicative stochastic forcing. We introduce a notion of “renormalized” kinetic formulations in which the kinetic defect measures on the boundary of a domain are truncated. In such a kinetic formulation we establish a result of well-posedness of the initial-boundary value problem under only the assumptions (H1), (H2) and (H3) stated below, which are very similar ones in [6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.