Abstract

We investigate a coagulation-fragmentation equation with boundary data, establishing the well-posedness of the initial value problem when the coagulation kernels are bounded at zero and showing existence of solutions for the singular kernels relevant in the applications. We determine the large time asymptotic behavior of solutions, proving that solutions converge exponentially fast to zero in the absence of fragmentation and stabilize toward an equilibrium if the boundary value satisfies a detailed balance condition. Incidentally, we obtain an improvement in the regularity of solutions by showing the finiteness of negative moments for positive time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call