Abstract
On a real segment, we consider a boundary value problem for a singular integro-differential equation of the first kind with the Cauchy kernel in the characteristic part. The well-posedness of this problem, established by the authors on a pair of specially selected spaces, allows to use approximate methods for its solving. We propose a general projection method, establish the conditions for its convergence in the chosen spaces and estimates the error of approximate solutions. As a result, uniform error estimates are obtained. A computational scheme of the wavelet collocation method is constructed, its theoretical substantiation is carried out, the results of a numerical experiment are presented on a model example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.