Abstract
In this paper, we consider the inverse problem of determining the permeability of the subsurface from hydraulic head measurements, within the framework of a steady Darcy model of groundwater flow. We study geometrically defined prior permeability fields, which admit layered, fault and channel structures, in order to mimic realistic subsurface features; within each layer we adopt either a constant or continuous function representation of the permeability. This prior model leads to a parameter identification problem for a finite number of unknown parameters determining the geometry, together with either a finite number of permeability values (in the constant case) or a finite number of fields (in the continuous function case). We adopt a Bayesian framework showing the existence and well-posedness of the posterior distribution. We also introduce novel Markov chain Monte Carlo (MCMC) methods, which exploit the different character of the geometric and permeability parameters, and build on recent advances in function space MCMC. These algorithms provide rigorous estimates of the permeability, as well as the uncertainty associated with it, and only require forward model evaluations. No adjoint solvers are required and hence the methodology is applicable to black-box forward models. We then use these methods to explore the posterior and to illustrate the methodology with numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.