Abstract

The idea to use classical hypergeometric series and, in particular, well-poised hypergeometric series in diophantine problems of the values of the polylogarithms has led to several novelties in number theory and neighbouring areas of mathematics. Here, we present a systematic approach to derive second-order polynomial recursions for approximations to some values of the Lerch zeta function, depending on the fixed (but not necessarily real) parameter α satisfying the condition Re ( α ) < 1 . Substituting α = 0 into the resulting recurrence equations produces the famous recursions for rational approximations to ζ ( 2 ) , ζ ( 3 ) due to Apéry, as well as the known recursion for rational approximations to ζ ( 4 ) . Multiple integral representations for solutions of the constructed recurrences are also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.