Abstract

Well logs are processed and interpreted to estimate in-situ reservoir properties, which are essential for reservoir modeling, reserve estimation, and production forecasting. While the traditional methods are mostly based on multimineral physics or empirical formulae, machine learning provides an alternative data-driven approach that requires much less a-priori geological or petrophysical information. From October 2021 to March 2022, the Petrophysical Data-Driven Analytics Special Interest Group (PDDA SIG) of the Society of Petrophysicists and Well Log Analysts (SPWLA) hosted a machine-learning contest aiming to develop data-driven models for estimating reservoir properties, including shale volume, porosity, and fluid saturation, based on a common set of well logs, including gamma ray, bulk density, neutron porosity, resistivity, and sonic. Log data from nine wells from the same field, together with the interpreted reservoir properties by petrophysicists, were provided as training data, and five additional wells were provided as blind test data. During the contest, various data-driven models were developed by the contestants to predict the three reservoir properties with the provided training data set. The top five performing models from the contest, on average, beat the performance of the benchmarked Random Forest model by 45% in the root-mean-square error (RMSE) score. In the paper, we will review these top-performing solutions, including their preprocessing techniques, feature engineering, and machine-learning models, and summarize their advantages and conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.