Abstract

Bifunctional catalysts are vital for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in metal-air batteries. In this work, Co–Co3O4/N-doped carbon nanosheets (NCNs) were developed as highly efficient bifunctional oxygen catalysts via the pyrolysis of a hybrid ZIF-67/CNs precursor. It is found that the introduced CNs play important roles. On one hand, the introduced CNs can tune the surface contents of Co, N and/or O species that are closely correlated with OER and ORR activity. On the other hand, they also facilitate to achieve high specific surface areas for the catalysts. In addition, the introduced CNs helps the formed Co–Co3O4 hybrid nanoparticles with uniform and small sizes to be well-distributed on the NCNs substrates. Despite such important roles, it should be noted that a moderate content of the introduced CNs is required to achieve optimal oxygen catalytic activity. As a result, the optimized ZIF-67/CNs(1)-600 exhibits a low value of η10 (~350 mV) for OER and a high value of E1/2 (~0.85 V) for ORR. Its overall bifunctional activity (ΔE) is as low as ~0.73 V, which is comparable to the recent reported Co-based catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.