Abstract
AbstractWe report on the fine tuning of sputtered gold nanoparticles (Au NPs) with optimized diameters (7–25 nm) and distribution on the high surface area titania nanotube arrays (TNTs). The uniform coverage of Au NPs both outside and inside the nanotube arrays was possible by adjusting the sputtering current, as confirmed via scanning electron microscopy imaging and X‐ray diffraction analysis. Decorating the TNTs with Au NPs extended their optical activity to the visible region of the light spectrum. This red shift was attributed to the localized surface plasmon resonance (LSPR) of Au NPs as verified computationally and experimentally. The Au–TiO2 composites demonstrated 86% increase in the photocurrent compared to the bare TNTs upon their use as photoanodes for water splitting. The photoactivity was found to depend on the size of the sputtered Au NPs. The photocurrent transient measurements under light on/off conditions revealed the photostability of the Au–TiO2 nanocomposites. The Mott–Schottky analysis showed a negative shift in the flat band position of the Au–TiO2 electrodes with increased donor density compared to the bare TNTs. Moreover, the Au–TiO2 showed lower space charge capacitance and longer life time of charge carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Electrochemical Science Advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.