Abstract
There is an immediate need for meticulous design of easily accessible, cost-effective, chemically stable and eco-friendly materials for effectively removal of water contaminant. Herein, targeting typical water contaminants, endocrine disrupting chemicals (EDCs), three cationic hyper-cross-linked porous polymers (ciHCP-1, ciHCP-2, ciHCP-3) with multiple adsorption sites were designed with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) as precursor. The ciHCP-3 with large surface area (806 m2 g−1) exhibited high sorption capacity (137–366 mg g−1), and fast adsorption kinetics (5 min) for the EDCs, which is superior to the reported sorbents. The adsorption mechanisms can be attributed to the synergistic effect of physisorption and chemisorption. The high preparation reproducibility, physicochemical stability, and reuse capability of ciHCP highlights its great potential in practical water remediation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.