Abstract

If the system of linear equations defining a multivariate rational interpolant is singular, then the table of multivariate rational interpolants displays a structure where the basic building block is a hexagon. Remember that for univariate rational interpolation the structure is built by joining squares. In this paper we associate with every entry of the table of rational interpolants a well-defined determinant representation, also when this entry has a nonunique solution. These determinant formulas are crucial if one wants to develop a recursive computation scheme. In section 2 we repeat the determinant representation for nondegenerate solutions (nonsingular systems of interpolation conditions). In theorem 1 this is generalized to an isolated hexagon in the table. In theorem 2 the existence of such a determinant formula is proven for each entry in the table. We conclude with an example in section 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.