Abstract

Functional floating bead (F-FB), prepared by anchoring the organic sulfonic acid on the surface of the blackberry-like structural FB, was used as both the inorganic substrate and the in situ dopant for the in situ chemical oxidative polymerization of pyrrole to obtain the plypyrrole/functional floating bead (PPy/F-FB) nanocomposite material. The composites possess high electrical conductivity at room temperature. Thermogravimetric analysis shows that the thermal stability of PPy/F-FB composites was enhanced and these can be attributed to the retardation effect of sulfonic acid-functionalized FB as barriers for the degradation of PPy. The morphology of PPy/FB composites showed the well-defined blackberry-like morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.