Abstract

As an extremely promising characteristic, the transformation between a lower critical solution temperature (LCST) and an upper critical solution temperature (UCST) has rarely been reported until now. In the present paper, a three-step strategy, based on “grafting onto” concept, was implemented to synthesize a novel thermoresponsive amphiphilic biodegradable and biocompatible poly(p-dioxanone)-grafted poly(vinyl alcohol) (PVA-g-PPDO) copolymer with well-define structure. A transformable thermoresponsivity from a LCST to an UCST can be achieved facilely via changing the graft chain length of the resulting PVA-g-PPDO copolymers. The results of transmittance indicate that a wide range of LCST and UCST between 30 and 80 °C can be achieved easily, which is attributed to the controllable structures and hydrophobic/hydrophilic ratio of copolymers by adjusting degree of polymerization (Dp) of PPDO prepolymers and molar feed ratios in the last esterification coupling step. This is the first example having the featu...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.