Abstract

Abstract The demand for energy has increased recently worldwide, requiring new oilfield discoveries to supply this need. Following this demand increase, challenges grow in all areas of the petroleum industry especially those related to drilling operations. Due to hard operational conditions found when drilling complex scenarios such as high-pressure/high-temperature (HPHT) zones, deep and ultradeep water, and other challenges, the use nonaqueous drilling fluids became a must. The reason for that is because this kind of drilling fluid is capable to tolerate these extreme drilling conditions found in those scenarios. However, it can experience changes in its properties as a result of pressure and temperature variations, requiring special attention during some drilling operations, such as the well control. The well control is a critical issue since it involves safety, social, economic, and environmental aspects. Well control simulators are a valuable tool to support well control operations and preserve the well integrity, verifying operational parameters and to assist drilling engineers in the decision-making process during well control operations and kick situations. They are also important computational tools for rig personnel training. This study presents well control research and development contributions, as well as the results of a computational well control simulator that applies the Driller's method and allows the understanding the thermodynamic behavior of synthetic drilling fluids, such as n-paraffin and ester base fluids. The simulator employed mathematical correlations for the drilling fluids pressure–volume–temperature (PVT) properties obtained from the experimental data. The simulator results were compared to a test well data set as well to the published results from other kick simulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call