Abstract

AbstractDiscontinuous Galerkin (DG) finite element methods have salient features that are mainly highlighted by their locality, their easiness in balancing the flux and source term gradients and their component‐wise structure. In the light of this, this paper aims to provide insights into the well‐balancing property of a second‐order Runge–Kutta Discontinuous Galerkin (RKDG2) method. For this purpose, a Godunov‐type RKDG2 method is presented for solving the shallow water equations. The scheme is based on local DG linear approximations and does not entail any special treatment of the source terms in order to achieve well‐balanced numerical results. The performance of the present RKDG2 scheme in reproducing conserved solutions for both free surface and discharge over strongly irregular topography is demonstrated by applying to several hydraulic benchmarks. Meanwhile, the effects of different slope limiting procedures on the well‐balancing property are investigated and discussed. This work may provide useful guidelines for developing a well‐balanced RKDG2 numerical scheme for shallow water flow simulation. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.