Abstract
The present paper concerns the derivation of numerical schemes to approximate the weak solutions of the Ripa model, which is an extension of the shallow-water model where a gradient of temperature is considered. Here, the main motivation lies in the exact capture of the steady states involved in the model. Because of the temperature gradient, the steady states at rest, of prime importance from the physical point of view, turn out to be very nonlinear and their exact capture by a numerical scheme is very challenging. We propose a relaxation technique to derive the required scheme. In fact, we exhibit an approximate Riemann solver that satisfies all the needed properties (robustness and well-balancing). We show three relaxation strategies to get a suitable interpretation of this adopted approximate Riemann solver. The resulting relaxation scheme is proved to be positive preserving, entropy satisfying and to exactly capture the nonlinear steady states at rest. Several numerical experiments illustrate the relevance of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.