Abstract

A class of well-balanced numerical schemes for the one-dimensional shallow water equations with temperature gradient is constructed. The construction of the schemes is based on two steps: the first step to absorb the nonconservative term and the second step to deal with the evolution of the system. Algorithms for computing contact waves which absorb the nonconservative term are developed. Furthermore, to improve the accuracy, the underlying numerical fluxes can be formed as convex combinations of a pair of numerical fluxes of a low and stable scheme and a higher and fast scheme. The schemes are well balanced and can retain the positivity of the water height and the water temperature. Numerical tests show that the schemes are stable and have a good accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.