Abstract

We are interested in simulating gravitationally stratified atmospheric flows governed by the compressible Euler equations in irregular domains. In such simulations, one of the challenges arises when the computations are conducted on a Cartesian grid. The use of regular rectangular grids that intersect with the irregular boundaries leads to the generation of arbitrarily small and highly distorted computational cells adjacent to the boundaries of the domain. The appearance of such cells may affect both the stability and efficiency of the numerical method and therefore require special attention.In order to overcome this difficulty, we introduce a structured quadrilateral mesh, which is designed for the irregular domain at hand, and solve the studied atmospheric flow equations using a second-order central-upwind scheme. In addition, the resulting numerical method is developed to provide a well-balanced discretization of the underlying system. The latter is achieved by rewriting the governing equations in terms of equilibrium variables representing perturbations of the known background equilibrium state. The proposed method is tested in a number of numerical experiments, including the buoyant bubble rising and interacting with an (zeppelin) obstacle and the Lee wave generation due to topography. The obtained numerical results demonstrate high resolution and robustness of the proposed computational approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.