Abstract
Well-balanced and free energy dissipative first- and second-order accurate finite-volume schemes are proposed for a general class of hydrodynamic systems with linear and nonlinear damping. The variation of the natural Lyapunov functional of the system, given by its free energy, allows for a characterization of the stationary states by its variation. An analogous property at the discrete level enables us to preserve stationary states at machine precision while keeping the dissipation of the discrete free energy. Performing a careful validation in a battery of relevant test cases, we show that these schemes can accurately analyze the stability properties of stationary states in challenging problems such as phase transitions in collective behavior, generalized Euler--Poisson systems in chemotaxis and astrophysics, and models in dynamic density functional theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.