Abstract

A finite volume well-balanced weighted essentially nonoscillatory (WENO) scheme, fourth-order accurate in space and time, for the numerical integration of shallow water equations with the bottom slope source term, is presented. The main novelty introduced in this work is a new method for managing bed discontinuities. This method is based on a suitable reconstruction of the conservative variables at the cell interfaces, coupled with a correction of the numerical flux based on the local conservation of total energy. Further changes regard the treatment of the source term, based on a high-order extension of the divergence form for bed slope source term method, and the application of an analytical inversion of the specific energy-depth relationship. Two ad hoc test cases, consisting of a steady flow over a step and a surge crossing a step, show the effectiveness of the method of treating bottom discontinuities. Several standard one-dimensional test cases are also used to verify the high-order accuracy, the C-...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.