Abstract

A poly (3,6-bis(thiophen-2-yl)-2,5-bis(2-decyltetradecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-(2,3-bis(phenyl)acrylonitrile)) (PDPADPP) copolymer, composed of diketopyrrolopyrrole (DPP) and a cyano (nitrile) group with a vinylene spacer linking two benzene rings, is synthesized via a palladium-catalyzed Suzuki coupling reaction. The electrical performance of PDPADPP in organic field-effect transistors (OFETs) and circuits is investigated. The OFETs based on PDPADPP exhibit typical ambipolar transport characteristics, with the as-cast OFETs demonstrating low field-effect hole and electron mobility values of 0.016 and 0.004cm2 V-1 s-1 , respectively. However, after thermal annealing at 240°C, the OFETs exhibit improved transport characteristics with highly balanced ambipolar transport, showing average hole and electron mobility values of 0.065 and 0.116cm2 V-1 s-1 , respectively. To verify the application of the PDPADPP OFETs in high-voltage logic circuits, compact modeling using the industry-standard small-signal Berkeley short-channel IGFET model (BSIM) is performed, and the logic application characteristics are evaluated. The circuit simulation results demonstrate excellent logic application performance of the PDPADPP-based ambipolar transistor and illustrate that the device annealed at 240°C exhibits ideal circuit characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call