Abstract

Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.