Abstract

The similar characteristics of biomaterials to the extracellular matrix are essential for efficient tissue repair through dictating cell behaviors. But the scaffold fabrication with complex shapes and controlled alignment have proven to be a difficult task. Herein, a well-designed three-dimensional silk fibroin scaffold is fabricated through ice template technology. The effect of the silk fibroin protein concentration and the freezing temperature on the microstructure and mechanical properties of scaffolds are investigated systematically. Cells behavior mediated by the obtained silk fibroin scaffolds is detected. The results show that the protein concentration plays a vital role in microstructure and scaffold strength. A well-aligned scaffold can be obtained when silk fibroin solution is kept at 12 wt%, which holds the highest mechanical properties. The pore size can be further adjusted in the range of 5–80 µm by changing the freezing temperature from −60 to −196 °C. The well-oriented scaffold with the appropriate pore size of 10–20 µm has the best ability to guide cell alignment. The resulting scaffolds provide an excellent matrix to guide cells behaviors and have a potential application in tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.