Abstract

We study online combinatorial auctions with production costs proposed by Blum et al. [4] using the online primal dual framework. In this model, buyers arrive online, and the seller can produce multiple copies of each item subject to a nondecreasing marginal cost per copy. The goal is to allocate items to maximize social welfare less total production cost. For arbitrary (strictly convex and differentiable) production cost functions, we characterize the optimal competitive ratio achievable by online mechanisms/algorithms. We show that online posted pricing mechanisms, which are incentive compatible, can achieve competitive ratios arbitrarily close to the optimal, and construct lower bound instances on which no online algorithms, not necessarily incentive compatible, can do better. Our positive results improve or match the results in several previous work, e.g., Bartal et al. [3], Blum et al. [4], and Buchbinder and Gonen [6]. Our lower bounds apply to randomized algorithms and resolve an open problem by Buchbinder and Gonen [6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.