Abstract
This paper presents numerical analyses of a welding simulation of a bogie frame side beam. The simulation is based on an analytical thermal model coupled with a non-linear structural finite element model using shell elements enabling the welding simulation of large structures. The predicted clamping forces, distortions, and residual stresses for different clamping conditions and plate thicknesses are analysed in terms of manufacture. A new fatigue model based on the endurance limit approach is proposed using residual stresses to predict the S-N curves. The predicted S-N curves with the proposed model showed close correlation with the S-N curves for class F and class F2 welds of the BS7608 standard, demonstrating its validity and potential use in design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.