Abstract

With the fourth industrial revolution in progress, traditional manufacturing processes are being transformed. Fusion welding is no exception from this transformation. The centuries-old manual craft is being reshaped by cyber-physical systems, turning into a digitized process governed by industrial informatics. By implementing process monitoring in welding applications invaluable data are collected that can be utilized in the new, futuristic smart factories of Industry 4.0. In this article two purposes are being served. The first is to present the status quo alongside the future trends of welding process monitoring on industrial implementation. The second is to present the results of an ongoing investigation of robotic Gas Tungsten Arc Welding (GTAW) monitoring for defect detection and characterization. Deviations from the optimal values in three welding conditions (surface integrity, shielding gas flow rate and surface contamination) were introduced during stainless steel 316L beads-on-plates welding. Acquired data during the welding process were used to extract features in order to identify correlations between the disturbances and the monitored signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call