Abstract

Welding of single-crystal metallic nanowires is likely to have an important role in the bottom-up fabrication of nanodevices. The welding effects of free ends of two single-crystal gold nanowires (Au–Au) were demonstrated by Monte Carlo simulations in this paper. The quantum corrected Sutton–Chen type many-body potential was used to model the metal–metal interactions. Metallic nanowires were first placed closely with head-to-head, head-to-side and side-to-side joining procedures. Two ends were successfully welded together to form a continuous nanowire by annealing at different temperatures. The welding effects of the different joining procedure with different temperatures were compared. Structures of the welded specimens were characterized by the common neighbor analysis technique. Variable atomic mobility, freedom and contacting angles may result in different bonding strengths in the three different configurations. The results showed that the joint structure welded at low temperature were similar to the cold welding without fusion meanwhile the molten phase was presented in the joint when processing at the high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call