Abstract
This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.