Abstract

To investigate hydrogen cold cracking in iron aluminides and, specifically, to study the effect of fusion zone grain size on cracking susceptibility, welds were produced using magnetic arc oscillation to refine the fusion zone grain structures. Conventional welding produced extremely coarse columnar fusion zone grains (an average linear dimension of 530 micrometers) while welds produced with a magnetically oscillated arc contained equiaxed fusion zone grains averaging 115 micrometers in diameter. Slow strain rate tensile tests were conducted in varying water vapor atmospheres, on weldments with average fusion zone grain sizes ranging between 115 and 530 micrometers. Fracture strength and percent strain to fracture were measured for each fusion zone microstructure. The fracture strength increased in proportion to the inverse square root of the mean grain diameter, and decreased with increasing water vapor concentration. The results of the tensile tests showed that finer, equiaxed fusion zones were less susceptible to hydrogen cracking and more tolerant of high hydrogen concentrations than coarse fusion zone grain structures. Microstructural refinement via arc oscillation was also found to be suitable only for well-controlled fabrication environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call