Abstract

The creep strength-enhanced ferritic (CSEF) steels are undergoing an encouraged use around the world especially in power plant construction. On construction sites, it has always been the target to have no problems in welded joints but premature failures are being encountered. The primary reason of these premature failures is found to be the improper heat treatment that is mandatorily carried out to achieve the required weld hardness. Weld hardness has close relationship with creep strength and ductility of the welded structures. Hence it is important for any weld to achieve certain level of weld hardness. This study aims at ascertaining the importance of Post Welding Heat Treatment (PWHT) in achieving the required hardness in creep-strength enhanced ferritic (CSEF) materials.The study was carried out on the welding of alloy steel ASTM A335 Gr. P-91 with the same base material (ASTM A335 Gr. P-91) by Gas Tungsten Arc Welding (GTAW) process using ER90S-B9 filler wire with pre-heat of 200oC (min) and inter-pass temperature of 300oC (max). After welding, the joints were tested for soundness with Radiography testing. Induction heating was used for heat treatment of P91 pipes during welding and post weld heat treatment. The effect of Post Weld Heat Treatment (PWHT) was investigated on the Weld metal and the Heat Affected Zones (HAZ) by hardness testing. It is perceived that the scattered and higher hardness values, more than 250HB in 2” P91 pipes in the weld metal and in the heat affected zones, can be brought into the lower required level, less than 250HB, with an effective post weld heat treatment at 760°C for 2hrs.It is concluded that PWHT is the most effective way of relieving the welding stresses that are produced due to high heat input in the welding process and to achieve the required level of hardness in the weld as well as in the heat affected zones (HAZ) in thermal power plant main steam piping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.