Abstract

Reversible one-dimensional cellular automata are studied from the perspective of Welch Sets. This paper presents an algorithm to generate random Welch sets that define a reversible cellular automaton. Then, properties of Welch sets are used in order to establish two bipartite graphs describing the evolution rule of reversible cellular automata. The first graph gives an alternative representation for the dynamics of these systems as block mappings and shifts. The second graph offers a compact representation for the evolution rule of reversible cellular automata. Both graphs and their matrix representations are illustrated by the generation of random reversible cellular automata with 6 and 18 states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call