Abstract
The drug discovery and development process is lengthy and expensive, and bringing a drug to market may take up to 18 years and may cost up to 2 billion $US. The extensive use of computer-assisted drug design techniques may considerably increase the chances of finding valuable drug candidates, thus decreasing the drug discovery time and costs. The most important computational approach is represented by structure-activity relationships that can discriminate between sets of chemicals that are active/inactive towards a certain biological receptor. An adverse effect of some cationic amphiphilic drugs is phospholipidosis that manifests as an intracellular accumulation of phospholipids and formation of concentric lamellar bodies. Here we present structure-activity relationships (SAR) computed with a wide variety of machine learning algorithms trained to identify drugs that have phospholipidosis inducing potential. All SAR models are developed with the machine learning software Weka, and include both classical algorithms, such as k-nearest neighbors and decision trees, as well as recently introduced methods, such as support vector machines and artificial immune systems. The best predictions are obtained with support vector machines, followed by perceptron artificial neural network, logistic regression, and k-nearest neighbors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.