Abstract

Being essentially free from regularity conditions, the Weiss-Weinstein estimation error lower bound can be applied to a larger class of systems than the well-known Crameacuter-Rao lower bound. Thus, this bound is of special interest in applications involving hybrid systems, i.e., systems with both continuously and discretely distributed parameters, which can represent, in practice, fault-prone systems. However, the requirement to know explicitly the joint distribution of the estimated parameters with all the measurements makes the application of the Weiss-Weinstein lower bound to Markovian dynamic systems cumbersome. A sequential algorithm for the computation of the Crameacuter-Rao lower bound for such systems has been recently reported in the literature. Along with the marginal state distribution, the algorithm makes use of the transitional distribution of the Markovian state process and the distribution of the measurements at each time step conditioned on the appropriate states, both easily obtainable from the system equations. A similar technique is employed herein to develop sequential Weiss-Weinstein lower bounds for a class of Markovian dynamic systems. In particular, it is shown that in systems satisfying the Crameacuter-Rao lower bound regularity conditions, the sequential Weiss-Weinstein lower bound derived herein reduces, for a judicious choice of its parameters, to the sequential Crameacuter-Rao lower bound

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.