Abstract
In this paper we discuss a general notion of Weil cohomology theories, both in algebraic geometry and in rigid analytic geometry. We allow our Weil cohomology theories to have coefficients in arbitrary commutative ring spectra. Using the theory of motives, we give three equivalent viewpoints on Weil cohomology theories: as a cohomology theory on smooth varieties, as a motivic spectrum and as a realization functor. We also associate to every Weil cohomology theory a motivic Hopf algebroid generalizing the construction we gave in Ayoub (2014) for the Betti cohomology. Exploiting results and constructions from Ayoub (2020), we are able to prove that the motivic Hopf algebroids of all the classical Weil cohomology theories are connective. In particular, they give rise to motivic Galois groupoids which are spectral affine groupoid schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.