Abstract
We consider Boolean exact threshold functions defined by linear equations, and in general degree d polynomials. We give upper and lower bounds on the maximum magnitude (absolute value) of the coefficients required to represent such functions. These bounds are very close and in the linear case in particular they are almost matching. The quantity is the same as the maximum magnitude of integer coefficients of linear equations required to express every possible intersection of a hyperplane in R n and the Boolean cube {0,1} n , or in the general case intersections of hypersurfaces of degree d in R n and the Boolean cube {0,1} n . In the process we construct new families of ill-conditioned matrices. We further stratify the problem (in the linear case) in terms of the dimension k of the affine subspace spanned by the solutions, and give upper and lower bounds in this case as well. Our bounds here in terms of k leave a substantial gap, a challenge for future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.