Abstract
Global weighted $L^{p}$-estimates are obtained for the gradient of solutions to a class of linear singular, degenerate elliptic Dirichlet boundary value problems over a bounded non-smooth domain. The coefficient matrix is symmetric, nonnegative definite, and both its smallest and largest eigenvalues are proportion to a weight in a Muckenhoupt class. Under a smallness condition on the mean oscillation of the coefficients with the weight and a Reifenberg flatness condition on the boundary of the domain, we establish a weighted gradient estimate for weak solutions of the equation. A class of degenerate coefficients satisfying the smallness condition is characterized. A counter example to demonstrate the necessity of the smallness condition on the coefficients is given. Our $W^{1,p}$-regularity estimates can be viewed as the Sobolev's counterpart of the H\"{o}lder's regularity estimates established by B. Fabes, C. E. Kenig, and R. P. Serapioni in 1982.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.