Abstract
Although the analytical solutions for total least-squares with multiple linear and single quadratic constraints were developed quite recently in different geodetic publications, these methods are restricted in number and type of constraints, and currently their computational efficiency and applications are mostly unknown. In this contribution, it is shown how the weighted total least-squares (WTLS) problem with arbitrary applicable constraints can be solved based on a Newton type methodology. This iterative process with quadratic convergence is expanded upon to become a compact solution for the WTLS with or without constraints. This compact solution is then further interpreted as a universal formula for the symmetrical adjustment of the errors-in-variables model which represents affine, similarity and rigid transformations in two- and three-dimensional space. Furthermore, statistical analysis of the constrained WTLS including the first-order approximation of precision and the bias was investigated. In order to substantiate our proposed method’s applicability, it was used to solve the affine, similarity and rigid transformation problem in two- and three-dimensional cases, where the structure of the coefficient matrix and multiple constraints were taken into account simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.