Abstract

Conventional stochastic response surface methods (SRSM) based on polynomial chaos expansion (PCE) for uncertainty propagation treat every sample point equally during the regression process and may produce inaccurate estimations of PCE coefficients. To address this issue, a new weighted stochastic response surface method (WSRSM) that considers the sample probabilistic weights in regression is studied in this work. Techniques for determining sample probabilistic weights for three sampling approaches Gaussian Quadrature point (GQ), Monomial Cubature Rule (MCR), and Latin Hypercube Design (LHD) are developed. The advantage of the proposed method is demonstrated through mathematical and engineering examples. It is shown that for various sampling techniques WSRSM consistently achieves higher accuracy of uncertainty propagation without introducing extra computational cost compared to the conventional SRSM. Insights into the relative accuracy and efficiency of various sampling techniques in implementation are provided as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.