Abstract

In this paper we develop elements of the global calculus of Fourier integral operators in under minimal decay assumptions on phases and amplitudes. We also establish global weighted Sobolev L2 estimates for a class of Fourier integral operators that appears in the analysis of global smoothing problems for dispersive partial differential equations. As an application, we exhibit a new type of weighted estimates for hyperbolic equations, where the decay of data in space is quantitatively translated into the time decay of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.