Abstract

Weighted singular value decomposition (WSVD) and a representation of the weighted Moore–Penrose inverse of a quaternion matrix by WSVD have been derived. Using this representation, limit and determinantal representations of the weighted Moore–Penrose inverse of a quaternion matrix have been obtained within the framework of the theory of noncommutative column-row determinants. By using the obtained analogs of the adjoint matrix, we get the Cramer rules for the weighted Moore–Penrose solutions of left and right systems of quaternion linear equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.