Abstract

BackgroundIn recent years, there has been increased interest in the study of the molecular processes that affect semen traits. In this study, our aim was to identify quantitative trait loci (QTL) regions associated with four semen traits (motility, progressive motility, number of sperm cells per ejaculate and total morphological defects) in two commercial pig lines (L1: Large White type and L2: Landrace type). Since the number of animals with both phenotypes and genotypes was relatively small in our dataset, we conducted a weighted single-step genome-wide association study, which also allows unequal variances for single nucleotide polymorphisms. In addition, our aim was also to identify candidate genes within QTL regions that explained the highest proportions of genetic variance. Subsequently, we performed gene network analyses to investigate the biological processes shared by genes that were identified for the same semen traits across lines.ResultsWe identified QTL regions that explained up to 10.8% of the genetic variance of the semen traits on 12 chromosomes in L1 and 11 chromosomes in L2. Sixteen QTL regions in L1 and six QTL regions in L2 were associated with two or more traits within the population. Candidate genes SCN8A, PTGS2, PLA2G4A, DNAI2, IQCG and LOC102167830 were identified in L1 and NME5, AZIN2, SPATA7, METTL3 and HPGDS in L2. No regions overlapped between these two lines. However, the gene network analysis for progressive motility revealed two genes in L1 (PLA2G4A and PTGS2) and one gene in L2 (HPGDS) that were involved in two biological processes i.e. eicosanoid biosynthesis and arachidonic acid metabolism. PTGS2 and HPGDS were also involved in the cyclooxygenase pathway.ConclusionsWe identified several QTL regions associated with semen traits in two pig lines, which confirms the assumption of a complex genetic determinism for these traits. A large part of the genetic variance of the semen traits under study was explained by different genes in the two evaluated lines. Nevertheless, the gene network analysis revealed candidate genes that are involved in shared biological pathways that occur in mammalian testes, in both lines.

Highlights

  • In recent years, there has been increased interest in the study of the molecular processes that affect semen traits

  • The evaluated traits were: (1) sperm motility (MOT), which is the proportion of moving sperm cells in an ejaculate; (2) sperm progressive motility (PROMOT), defined as the proportion of sperm cells that move in a straight line; (3) abnormal sperm cell number (ABN), which is the total number of sperm cells with morphological abnormalities; and (4) the total number of sperm cells in the ejaculate (Ncells per ­106 sperm cells)

  • In the weighted single-step GWAS (WssGWAS), we identified several relevant quantitative trait loci (QTL) regions associated with the traits under study, which confirms the assumption that these traits have a complex genetic determinism

Read more

Summary

Introduction

There has been increased interest in the study of the molecular processes that affect semen traits. Our aim was to identify quantitative trait loci (QTL) regions associated with four semen traits (motility, progressive motility, number of sperm cells per ejaculate and total morphological defects) in two commercial pig lines (L1: Large White type and L2: Landrace type). Artificial insemination (AI) pig industry focuses mainly on maximizing the number of insemination doses produced from each boar ejaculate To achieve this goal, the ability of boars to produce high-quality semen With the fast advances in high-throughput genotyping and in molecular techniques in general, there is an increased interest in the study of the molecular processes and genetic mechanisms that affect semen traits. Very few studies analyze large datasets to identify novel quantitative trait loci (QTL) and to provide a deeper knowledge of the genes that control boar semen. Mutations and impaired expression of genes that control the whole process of spermatogenesis and sperm maturation can lead to problems in semen quality and fertility

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call