Abstract

This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Results indicate the feasibility of the proposed algorithm to reduce typical tomosynthesis artifacts produced by high-attenuation features. The proposed algorithm assigns weighting coefficients automatically and no segmentation or tissue-classification steps are required. The algorithm can be included into various iterative reconstruction algorithms with an additive updating strategy. It can also be extended to computed tomography case with the complete set of angular data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.