Abstract
Recently, collaborative representation classifiers have been extensively studied as an essential method for hyperspectral image. However, how to comprehensively utilize the classification advantages of multiple collaborative classifiers has not been well investigated. In this paper, two new dynamic ensemble learning methods using local weighted residual (LWR-DEL) and double-weighted residual (DWR-DEL) of multi-collaborative representation classifiers are proposed. First, the dynamic ensemble learning method based on clustering is utilized to introduce prior knowledge for the collaborative representation classifier. Then, with prior knowledge, the local weights of each classifier for a different region of competence are obtained. To consider the global information of hyperspectral data, the K-nearest neighbor (K-NN) algorithm is adopted to achieve validation samples with global information. The global weights for each classifier can be obtained and then used to constrain the locally weighted residuals. Similar to LWR-DEL, the global information is also used to constrain residual, and then double-weighted constrained residual fusion obtains the final classifier result. The effectiveness of the proposed methods is validated using three hyperspectral data sets. The experimental results show that both LWR-DEL and DWR-DEL outperform their single-classifier counterparts. In particular, the proposed methods provide superior performance compared with the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.