Abstract

We consider weighted Reed---Muller codes over point ensemble S 1 × · · · × S m where S i needs not be of the same size as S j . For m = 2 we determine optimal weights and analyze in detail what is the impact of the ratio |S 1|/|S 2| on the minimum distance. In conclusion the weighted Reed---Muller code construction is much better than its reputation. For a class of affine variety codes that contains the weighted Reed---Muller codes we then present two list decoding algorithms. With a small modification one of these algorithms is able to correct up to 31 errors of the [49,11,28] Joyner code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.