Abstract

A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.