Abstract

Permutation entropy (PE) has been recently suggested as a novel measure to characterize the complexity of nonlinear time series. In this paper, we propose a simple method to address some of PE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. The method relies on the fact that patterns may be too disparate in amplitudes and variances and proceeds by assigning weights for each extracted vector when computing the relative frequencies associated with every motif. Simulations were conducted over synthetic and real data for a weighting scheme inspired by the variance of each pattern. Results show better robustness and stability in the presence of higher levels of noise, in addition to a distinctive ability to extract complexity information from data with spiky features or having abrupt changes in magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.