Abstract

Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem. Different assumptions or priors on images are applied in the construction of image regularization methods. In recent years, matrix low-rank approximation has been successfully introduced in the image denoising problem and significant denoising effects have been achieved. Low-rank matrix minimization is an NP-hard problem and it is often replaced with the matrix’s weighted nuclear norm minimization (WNNM). The assumption that an image contains an extensive amount of self-similarity is the basis for the construction of the matrix low-rank approximation-based image denoising method. In this paper, we develop a model for image restoration using the sum of block matching matrices’ weighted nuclear norm to be the regularization term in the cost function. An alternating iterative algorithm is designed to solve the proposed model and the convergence analyses of the algorithm are also presented. Numerical experiments show that the proposed method can recover the images much better than the existing regularization methods in terms of both recovered quantities and visual qualities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call