Abstract
Studies shows that finding frequent sub-graphs in uncertain graphs database is an NP complete problem. Finding the frequency at which these sub-graphs occur in uncertain graph database is also computationally expensive. This paper focus on investigation of mining frequent sub-graph patterns in DBLP uncertain graph data using an approximation based method. The frequent sub-graph pattern mining problem is formalized by using the expected support measure. Here n approximate mining algorithm based Weighted MUSE, is proposed to discover possible frequent sub-graph patterns from uncertain graph data
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.